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A STRAIN GRADIENT THEORY OF PLASTICITY

O. W. DILLON, JR. and J. KRATOCHVILt

Department of Engineering Mechanics, University of Kentucky, Lexington, Kentucky

Abstract-A theory which includes first and second strain gradients is proposed as a model for plastic deforma
tions. Heuristic arguments for including the gradients are also given. The main goal is to develop a logical
framework in which behavior on a small scale can interact with the response on a larger one. The gradients lead
to deformations which contain oscillatory components in addition to the ones obtained without them. For a
particular material, these oscillatory deformations develop only during plastic deformations. They contain
many of the properties that one would expect of the continuum analogue of dislocations. As contrasted with the
theory of the continuous distribution of dislocations, the proposed theory applies to the entire plastic deformation
process.

1. INTRODUCTION

IT IS very easy to observe plastic substances by performing an elementary tension test in
which the material is loaded above some yield stress and the load removed (unloading).
If permanent strains are found to occur when the load is completely removed, the material
is said to be inelastic. If the stress-strain curve is independent of the time required for
completing the cycle, the material is said to be plastic. Such materials are to be contrasted
with viscoelastic or visco-plastic substances where the response functions involve the
rate of deformation. Clearly a particular real material may be approximated as a plastic
substance in some circumstances, as an elastic one in others and as visco-plastic in a still
different class of problems. Idealized materials have no such variation in their responses,
they are defined by constitutive relations and therefore retain their properties for all types
of problems. For our present purposes we choose to consider materials whose response
functions are independent of deformation rates; because this is the basic characteristic of
materials which undergo plastic deformations. For convenience only, we also limit to small
strains because the difference between this type problem and one with finite deformation
measures is not critical.

The mathematical theory of plasticity that has become classical (see Hill [1]) is a com
plete analytical theory and is furthermore applicable to real materials under conditions
which do not vary too much from those used to experimentally evaluate the response
function. The difficulty is that real materials exhibit a wide variety of behaviors; and there
does not appear to be a unified method for representing the response functions. For
example the concept of "isotropic work hardening" applies very well to some materials but
not at all to others. By considering nature in more detail, it is hoped that one could achieve
a greater unity to the underlying structure of the response functions. It may not turn out
to be the case because of the many different atomic and microscopic mechanisms already
observed by physicists and metallurgists. However this remains a major goal of some re
searchers considering the foundations of plasticity.

A review of the present state of knowledge concerning plasticity will convince almost
anyone that an improvement over the classical approach will come from considering small

t On leave from the Institute of Solid State Physics, Prague, Czechoslovakia.
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scale defects, especially "dislocations" in some way. The open question is, how? For some
time it was believed that the continuous distribution ofdislocations was an example of how
to proceed from the microscopic scale to the normal continuum level. This procedure has
recently [2] been said by some of its earlier proponents to be ineffective. Additional studv
of the present state of knowledge will show that a major need in continuum plasticity is a;l
adequate representation of the "hardening" process and that physically this involves the
interaction of dislocations with one another or with other defects. The "how" to incor·
porate this in a continuum theory is understood even less than how to consider dislocations
themselves. For the purpose of having dislocations affect the response functions, the
authors have recently [3] introduced an "internal" state variable approach. However the
important question of "what is the continuum analogue of the dislocation" is not resolved
by this procedure? Many people have many different ideas on what dislocations really
are, but we believe it is fair to say there is no widely accepted analytical statement which
defines this physical phenomena in a continuum manner.

Without being very precise, it is clear that dislocations occur at only a small percentage
of atom sites in a chunk ofa solid. When these dislocations interact to provide the hardening
effect, they do so by forces whose range is many atomic radii. Now the classical concept
of stress arises on the atomic scale as nearest neighbor interactions. Even in the calcula
tions describing elastic materials, one considers (Lax [4]) that it is appropriate to introduce
higher spatial gradients of the displacement in a continuum theory which is supposed to
correspond to atomic level phenomena where the interactions are not of the nearest
neighbor (i.e. not contact forces) type. Therefore we extend this concept of non local
interactions to the case of dislocations by using higher gradients of the displacement as
kinematical quantities entering the constitutive equations. Clearly the appropriate spatial
scale is the distance between dislocations. We have not yet been able to justify the cor
respondence between displacement gradients and dislocation interaction by considering
the energy distribution at the atomic level. However the analogy with elastic response
provides sufficient motivation for the study.

Toupin [5] introduced the basic principles to be followed in continuum theories in
volving higher gradients when he assumed the energy-density to depend on the rotation
gradients in addition to strain, and obtained the couple-stress theory of elasticity. In [5J
he wondered why the strain-gradients did not enter his formulation and proceeded to show
that this was basically due to a preconceived notion of the expression for work being done
at a point on the surface of a body. Toupin and Gazis [6] then exhibited the correspondence
between the first strain-gradient theory and the atomic lattice with nearest and next nearest
neighbor interactions. Mindlin [7,8] formulated the particular case of the second gradient
of strain and related some terms in that theory to surface tensions in solids. Green and
Rivlin [9] established a generalization of Toupin's basic work in which spatial gradients
of the displacement of arbitrary order could be considered as well as independent
"directors" of any order in materials designated as "multi-polar" media. Fox [10] recently
gave an explicit correspondence between directors and dislocation parameters.

Our approach
We propose here a theory which includes higher spatial gradients of the displacements

as a continuum level analogue of the dislocations and their interaction. The motivation
for including higher gradients are: (I) the basic concept of work hardening due to Seeger [11]
in which dislocations interact and therefore the internal forces are not restricted to being of
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the contact type; (2) the experimentalist using a better "strain gauge" (i.e. electron micro
scope or X-ray machine) observes a change in the non-homogeneous residual deformations
in a standard tensile test if he also observes large scale plastic strains; (3) in hindsight the
results of considering higher gradients contain such a nonhomogeneous strain field which
changes with the deformation. This seems to us to be the major characteristic of disloca
tions which ought to be retained in going to a larger scale. In contrast to the theory of the
continuous distribution of dislocations, we are able to study the entire process of plastic
deformations (for the material with a quadratic free energy) and not just an after the fact
calculation.

The calculations which are to follow are necessarily so complicated, that we outline
here what we shall later do in detail.

1. Second and third displacement gradients are to be involved, so we must define the
corresponding generalized stresses and the expression for the rate of doing work at a
generic point on the surface ofthe body. These stresses may very well be zero on the surface
of the body, but when we "localize" the conservation laws by saying that they apply to
every element of the body, the higher gradients appear to be essential in the continuum
model of nature in order to reflect the interaction of dislocations or other defects whose
force fields act over many atomic distances. The proposed theory is considered to be a
continuum theory but at the same time it provides knowledge ofthe deformation field over
a smaller scale than we use in classical plasticity. In short it requires a better strain gauge
to make the analogous experimental measurements, because there is a fine structure in the
deformation field.

2. More detailed discussion of the constitutive equations is given. We find it convenient
in our analysis to use a deformation field Vi which is the residual displacements in the
body if the classical stresses are removedt from the point. We decided to introduce the
field Vi' because in perfect plasticity it is the continuum analogue ofthe average displacement
induced by dislocation motions. In perfect plasticity this leads to the "plastic work" being
transformed completely into heat, which is really implied in atomic level calculations; it
is of course the main feature of plasticity. It is the presence of Vi (in addition to the dis
placement function) which is the difference between our work and Mindlin's [7] elasticity
theory.

3. The second law of thermodynamics is used in a standard Coleman-Noll axiomatic
way for most of the variables and slightly novel way for the "plastic strain". That is the
second law and other postulates are permitted to restrict the domain of the class of admis
sible processes as well as constitutive assumptions.

4. The theory is then illustrated for perfect plasticity and for a material in which the free
energy is a quadratic function of the relevant variables. It turns out that perfect plasticity
is simple and straight forward. Work hardening is then considered and requires a very
much more complex framework. The basis of the difficulty in work hardening substances is
that energy is "stored" at the atomic level in changing nonhomogeneous residual deforma
tions, and this mechanism is significant for subsequent response of the material. We are not
at all certain that we have the precise mechanism for energy storage. The real storage

t If the external forces are acting on the body, one imagines them removed in a quasi-static manner so that
unloading inertia effects are not introduced. The displacement U i is the vector from the initial position Xi of a
generic pomt to the place it would occupy under these conditions. Alternatively, one can imagine a second body
defonning without developing any classical stress (but with dipole and quadrapole stresses) in such a way as to
reproduce the residual defonnation of the real body.
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mechanism may involve some variations of our formulation. In particular we shall use
three spatial derivatives of the displacement whereas higher ones may be required for an
accurate representation of nature.

We believe that this analytical model illustrates an acceptable framework for plasticity.
It permits us to describe the entire process of plastic deformation in what we regard as a
logically consistent manner and this is our main goal!

5. Except for the basic equations we shall use the small strain-small rotation concept
and therefore for convenience use linear kinematic relations. These are not severe restric
tions and are used for clarity of presentation.

2. BALANCE EQUATIONS

Toupin [5J very carefully expresses the balance laws for a material where the strain and
gradients of rotation are considered. Except for the linear momentum, Green and Rivlin [9J
bury the difficulties of the constitutive relations for higher momenta in pseudo-body force
terms of appropriate tensor rank. Ralston and Jaunzemis [12J clearly illustrate the
differences in the accelerations for strain-gradient theories as compared to atomistic terms.
In different words they illustrate the fact that the constitutive equations for momenta in
fancy materials are uncertain. We neglect here all momenta except the usual linear one.

We consider a generic particle originally at Xi to move to a point Xi(Xa , t) at time t.

We utilize the Lagrangian approach and a rectangular cartesian coordinate system for
convenience.

When the third spatial gradients of the deformation are sufficient, the energy balance
equatIon ist assumed to be

E*+K = w- II qini dA + [ pordv+ [ hVi dv (I)
A Jvo Jvo

where E*, K and Ware the internal energy, kinetic energy and rate ofdoing work by surface
forces, respectively. The integrals in (1) are the contributions of the heat flow, energy source
and the work of the body forcesj;, respectively. The integrals are over the initial volume and
Po is the initial mass density. The rate of doing work Wby the surface forcest is assumed
to be

(2)

where t ij , tijk and t ijkl are the stress, dipole and quadrapole stresses§ respectively. Clearly
some of the t ijk are "couple stresses" in the sense that this term has come to be used in recent
years. In (2), Vi is the component of the velocity vector and n i is the component of the
normal to the surface. Considering a complete body the terms t ijk and t ijkl may very well
vanish on the surface, but when we "localize" we need II these higher gradients if we consider
applying the theory at the electron microscope scale (for example).

t We neglect writing body forces ofall tensor ranks above the first. We use cartesian tensors and the summation
convention for repeated indices. Superposed dots indicate material time derivatives.

t We use commas to denote partial derivatives, thus Vi,j == ov';OXj.
§ One can relate these to generalized tractions by including nj (see Green and Rivlin (9J or Mindlin (7]).
11 For a discussion oflong range forces see Kroner [13]. This need does not arise from the divergence theorem,

but rather from the postulate that localization is possible in the continuum model when non-nearest neighbors
interact in the corresponding dislocation model.



A strain gradient theory of plasticity

Applying the divergence theorem to (2) one obtains

w= W*+W**
where

and

w** = f(t" ,-t"kk,+t"kllk,)v,dVIJ,J IJ, J 'J, J I
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(3)

(4)

We also require the second law of thermodynamics in the form of the Clausius-Duhem
inequality

s- por + (q~) > 0
Po T T -

,~

where S is the entropy density, T is the absolute temperature.

(5)

3. ASSUMPTIONS

This section defines what we shall mean by a plastic material by listing a sequence of
assumptions.

Assumption No.1

The initial state is a configuration of material points in which the stress, dipole and
quadrapole stresses all vanish, as does the heat flux vector. The temperature in this state
is uniform at To and the material is at rest in an inertial reference frame, We identify the
material coordinates X~ with a material point X~ in this initial state.

By the motion of the material we shall meant the continuous mappings Xi = Xi(X~, t)
giving the position Xi of each material point X~ for each instant of time t. The displacement
of the generic particle is designated as U i , hence U i = X i - Xi' The symmetric part of the
first spatial gradient of Ui is the small strain tensor lOij whose components are

(6)

while the anti-symmetric part

(7)

is the small rotation.

t It is clear that the material is being permitted to deform such that after some motion, the state where the
stress, dipole and quadrapole stresses all vanish could not be mapped smoothly from the initial state. This
difference in the unstressed states existing at t = 0 and at t = t, is normally the basis for introducing dislocations
in the material. We prefer to retain the continuous mappings and to permit changing residual stress fields
(especially dipole and quadrapole stresses) as part of the motion.
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We associate the name second displacement gradients (Xijk with

(Xijk = Ui,jk

and (Xijkl with the third spatial gradient of Ui

(9)

Clearly there are certain symmetries implied in the relations (8) and (9). There is some
advantage in separating them into symmetric and anti-symmetric terms but we do not do
this in order to maintain a conciseness in notation,

Assumption No.2

As in classical continuum mechanics we assume the momentum/unit mass is equal to
the velocity Xi' This means th'lt we are going to neglect gradient (dislocation) dynamics.
Then the kinetic energy is assumed to be

(10)

Assumption No.3

We now assume that internal energy rate E* is the same when expressed in two co
ordinate systems having a constant relative velocity. When this is true, (1) and the definition
of K imply

which is the linear momentum equation for a material with higher stresses. Hence if we
assert that the balance laws must apply to every part of the body, we obtain

tij,j + tijk,kj + tijk1,lkj +/; = Po V; (11)

Assumption No. 3(a)

We now assume that the internal energy rate E* is the same when expressed in two co
ordinate systems having a constant relative angular velocity. When this is true; the above
integral, (1) and the definition of K imply

f(t[ijjwij d V+ fLt[ikJjl,lwiknj dA = O.

Hence the differential form of the angular momentum equation

t[ikj + t[ikJjl,lj = 0

and

is obtained with the aid of the divergence theorem. In the present theory these equations
will turn out to be identically zero and the stress tensor symmetric [due to constitutive
equation (13)]. These equations are to be subjected to boundary conditions where the
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integrands of the surface integral in (4) is specified at each point on the boundary just as
in second strain gradient elasticity [7].

It is in the transition from the integral to the differential form (11) that we introduce the
need for higher spatial variations in Ui' That is, when we assert that the integral applies to
every element of the body, we must introduce higher derivatives to obtain differential
equations representing non-local action at a point. The energy equation in differential
form now becomes

E = t·,v· ,+t"kV, 'k+t"kIV' 'kl-q, ,+por.IJ l,J !} I~J IJ I,l 1.,1
(11a)

Assumption No.4
We introduce a pseudo-motion y;(X~, t) of a material point, which is the mapping Yi

which gives the position Yi that each material point X ~ would take at time t, if all the classical
stresses tij were removed from the body quasi-statically; i.e. so that unloading inertia
effects would not be introduced. For example, one imagines this is done by a suitable body
force or temperature distributions. Approximately, Yi is the mapping from the initial state
to the final actual state in a test in which permanent homogeneous deformations are
produced. We associate the name residual displacement U i with the change in position from
the initial state to the position Yio so that

V i =Yi Xi'

We associate the name residual strain Pij with the symmetric part of the first gradient
of Vi

(12)

We next introduce the gradients of the residual displacements Vi as the gradients of
the deformation Ui plus a perturbation term {3ijk and {3ijkl defined by

v2 V,
-vv' =rt.ijk+{3ijk> (12a)x j X k

(12b)

Assumption No.5

We here consider that the entire process of plastic deformations is to be includedt in
a single analysis. Since plastic materials can sometimes be elastic, we include all variables
associated with thermoelasticity without much other justification. Most of the energy
associated with plastic deformation is dissipated as heat (Taylor [15], Dillon [16]), hence
Pij will bet included as an intermediate independent variable in constitutive equations.
Other "physical" evidence (Kroupa [17], Seeger [11], Kroner [18]) suggests that the part
of the energy that is "stored" is primarily in the nature of "tangling" which is here con
sidered to be synonymous with the value of (Xjjkl' Energy is also stored as the number of
dislocations increases. We consider that the corresponding phenomena in a continuum
theory is a change in energy as (Xijk is altered.

t The study of dislocation behavior in strain-rate independent materials usually does not involve the genera
tion of the dislocations and the changing structure of their arrangement, on the other hand work hardening theories
require this [11]. The generation of dislocations require new assumptions, such as Frank-Read sources,

~ Since Pij is not a state variable, there is some reason not to use it explicitly in constitutive equations. It is
our view here that one can use Pi;'
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To be explicit we assumet that the dependent variables (tij, t ijb t jjkh qb (/J, S) all depend
on the current values of (sij, P jj , (f.ijk> (f.ijkl, T) and are independent of the history and rates
of these parameters. For example the free energy ¢ is

( 13)

By not including the f3ijk and f3ijkl in the constitutive relations (13) we are in effect
neglecting the elastic couple stresses. These stresses arise at the atomic level due to non
nearest neighbor interactions which extend only over a few atomic radii. The gradient terms
being retained extend over afew dislocation separation distances but this is many atomic
distances.

Because plastic materials respond differently in hydrostatic solutions than in deviatoric
deformations, we shall separate the stresses and strains, so that ¢(Si) = ¢(eij, Skk) where

(4)

where Skk is the dilatation and eij are the components of the strain deviator. The stresses
are similarly divided such that

(l4a)

is the deviator of stress and tkk is the hydrostatic tension. We shall consider Pii = 0 because
plastic deformations are incompressible.

We emphasize that the constitutive equations for all of the dependent variables are in
the form (13) and that they are completely independent of the history and rates of deforma
tion. This is in contrast to viscoelastic or viscoplastic materials.

Assumption No. 5(a)

The free energy is assumed to explicitly contain Pjj , i.e.

(15)

It is the assumption which keeps the present analysis in plasticity and does not permit the
unwanted return to elasticity. In other words (15) prevents Pij from disappearing from ¢
in the same way that the temperature gradients frequently do in this type of analysis.
Pij is included in (13) to permit plastic work to go into heat. Thus it permits one to reason
ably study the process of developing plastic deformation where small temperature changes
are an important feature of the conservation of energy.

While the temperature changes are small, they are energetically equivalent to the plastic
work, which is thought to be important (e.g. Hill [1], p. 26) in conventional plasticity theories
which are used for work hardening materials.

t The analytical material to be examined herein is precisely defined by (13) and similar equations for (lij, fiji<.

In" qi' S). The discussion on dislocations is intended only to motivate the list of intermediate variables included
i~ (13). We believe that higher gradients can be loosely related to dislocations in one's mind. The precise connection
however has not been established.
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Assumption No.6
There is a region in the neighborhood of zero classical stresses where the material is

linearly elastic. That is P;j == 0 for processes in some regions of the space spanned by the
arguments listed in (13). It is convenient to introduce the boundary of these reversible
domains by means of a yield function !(Sjj, tijb t jjkb T) = 0 and by convention we take

and

! < 0 when Pij == 0

! :? 0 when Pij =1= O.

(16a)

(16b)

Real materials probably "yield" at very small stresses but the resulting permanent strains
are difficult to measure. Clearly the set of processes which satisfy both the second law (5)
and (16b) may be empty. This simply means the assumptions were made incorrectly and
new ones must be used.

Remark 1
For materials whose response functions do not depend on time or rates ofdeformation,

consistency indicates that the yield function should also have this property. Thus we
assume that

j = 0 when P;j =1= 0 (16c)

so that processes where Pij =1= 0 remain on the yield surface! = O. Said differently when one
considers processes where Pij =1= 0, subsequently unloads and thereafter reloads, plastic
flow commences when! = O. However this can be exactly the same state from which
unloading occurred, hence!must also vanish just prior to the unloading. Hence the value
of!is assumedt to be unchanged when plastic flow occurs.

An example of the type yield functions that seem to be appropriate to gradient theories
IS

where

! = !ijlu (16d)

(16e)

(16f)

In (16e) K b K k1 and Yij are "constants" of the appropriate tensor rank. In effect the yield
function (16d) represents the Von Mises criterion which expands in a manner related to the
values of the localized stresses.

We shall also assume that Pij = 0 when

! = 0 but j < 0

as is customary in plasticity.

t This assumption idealizes real material response. Iff increases, one is in the viscoplastic region.

(16g)
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Assumption No. 7

The condition of invariance of the free energy density cP in a rigid rotation of the
deformed body in the present case is taken as

(17)

Assumption No.8

The deviatoric stresses are related to the free energy by the stress relation.

(18)

For some materials we shall later see that this assumption is not needed but can be deduced
from the others. We prefer to bring it explicitly into the open because it is not a major point
in the paper. We would emphasize that it is applicable to loading and to unloading.

4. SECOND LAW

The main differences between Mindlin's second gradient elasticity [7] and plasticity
theory proposed here are the inclusion of ~j in (13) and the corresponding interpretation
of the second law of thermodynamics. We find it convenient to introduce the free energy
density cP by

E = cP + TS (19)

where E == E* after the linear and angular momentum terms are deleted. Considering
(1Ia) and (19) we have the energy equation in the form

Po4> = por- q~.~- poST - Post + tijEij+ tijkVi,jk + tijklVi,jkl

and the second law (5) is
. ,. ~~

ti/;ij+tijkVi,jk+tijklVi.jkl-POcP-PoST-y::::': O.

Because of (8), (9) and (14), this becomes

S · . /3 ' , ). ST· q~T~ > 0ijeij+tkkell +tijktY.ijk+tijkltY.ijkl-PO,/-,-Po -y-

(20)

(21)

(22)

where Sij is the stress deviator defined by

tij = tkkr5;)3 + Sij' (23)

The set of functions (Sij' tkk , cP, S, q~, tijk> tijk1 ) define a process if they satisfy the balance
laws. They are an admissible process in plastic materials if they are (a) a process, and (b)
satisfy the equations analogous to (13). Considering that the free energy, all the stresses, the
heat flux and entropy satisfy equation (13), (21) becomes

(Sij-po::Jeij+ (t;k_po:e~JEll-PO(:~+S)t-q~

+ (tkij - Po ~~. )aijk + (t kij1 - Po :la</>.. )akij1- Po ~p</>. Pij ::::.: O. (24)
utY..Jk utY.kJJI u I)
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We next consider certain convenient admissible processes where the balance equations
are trivially satisfied, but the second law may not be. Since the rates in the second law are
not fixed by the balance laws or the constitutive equations we choose them to suit our
convenience, and are able to make certain general deductions of significance. This is the
Coleman-Noll approach to thermodynamics of deformable media.

Remark 2

One of the major contributions of Coleman and Noll [19J was the clarity of the word
process in their analysis. Thus we remark that the knowledge of U i , V j and T as functions
of X 11. and t (within the body and during the appropriate time interval) are sufficient to des
cribe an admissible process. In point of fact Vi is related to U j and T when the detailed
process is being considered, but it is difficult to provide a general relationship. On the other
hand the strain rates derived from Uj and V j will be related through the condition tJ1at
J= 0 when Pij "I- O. Clearly only Uj and T can be controlled independently in a process.

The proof of the above remark is: since Uj, V j and T are known, then Bjj , Pij' IX jjk , IXj jkl
are also known. Once these are evaluated, the quantities (t jj , t ijb tijkl' qk' <fJ, s) are in turn
determin'ed by (13). Once these are calculated the gradients in (11) and (20) are known, by
choosing body forces/; and heat supply r, one satisfies (11) and (20) identically.

In general one must also check the angular momentum equations as well and utilize
higher types of body couples. These higher couples have not been carried along in order to
simplify the presentation. In what follows the angular momentum equations are simply
identities when (as shall be our case) the stresses tijk and t jjkl are symmetric in the first two
indices due to constitutive assumptions.

Now let Uj, T, V j be an arbitrary point such that Bij , Pij , etc. are within the domain of
the response functions for (<fJ, S, t jj , t jjb tijkl , qk) for the material point X~. Choosing arbi
trarilya time to, tensors eij' P;j, ii jjb ii jjkl , Aij , B jj , Aijk , B;jk' Bjjkl as well as vectors gj and
C j and the scalar a, we consider the displacements U j , V j and the temperature distributions
defined by

Uj = Uj+[ejj+(t-tO)Aij][Xj-XiJ

+ [ii jjk +(t- to)Ajjk][Xj- XiJ [Xk- X~J

+ [ii jjkl +(t- to)AijkIJ[Xj - XiJ [Xk- X~J [X1- XiJ,

V j = Vi+[Pij+(t-to)BijJ[Xj-XiJ

+ [ii jjk +Pijk +(t- to)Bijd [Xj- XiJ [Xk- X~J

+ [iiijkl +Pjjkl +(t- to)BijklJ [X j- XiJ [Xk- X~J [X1- XiJ,

T = T(X') +(t-to)a+[gj+(t-tO)c1][Xj-XjJ,

(25)

(26)

(27)

for all points in the body and for all t ~ to sufficiently close to to' Because of the large
number of parameters included here, we shall automatically assume that the quantities
to be listed are zero, unless explicitly declared to be different than zero. They are

A jj = A jjk = A jjk1 = Bjj = Bijk = Bijkl = 0,

a = Cj = O.
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Convenient processes No. 1

The stresses and strains satisfy the balance laws identically but the temperature is
imagined to be changed uniformly, such that the above quantities vanish except

a =P O.

In this case (24) reduces to

(28)

Since a can be plus or minus, or indeed changed suddenly from positive to negative, we
deduce that

lief;
--+s == O.aT (29)

Since (29) is independent of rates by (13), this deletes the third term from (24) for all re
maining processes.

Convenient process No. 2

We then consider a process which changes the volume uniformly, so that

All =P O.

Hence

(30)

since by assumption No.4, PH = O.

Convenient process No.3
We consider that it is possible to strain the material homogeneously in shear at uniform

temperature, so that A ij and Bij do not vanish and hence (24) becomes

(s»_po.Oef;. )A .. _po°ef; B.. > 0
IJ :'l lJ oP lJ - •

Ueij ij

Iff < 0, then Bij = 0 and we obtain

(31)

(18)'

since Aij is arbitrary. Furthermore iff = 0 and! < 0, Bij also vanishes. The coefficients of
A .. and B .. in (31) do not contain "rates" and hence the same result must be obtained

1) 1)

whether or notf = 0 orf < O. Hence (18)' is a result that must hold for all processes in the
class of materials being considered. It is the same relationship as is obtained in elastic
materials. Equation (31) then becomes

-po(:;JBu~ o. (32)
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The result (32) is really at the base of the explicit results to be developed below for it restricts
the domain of admissible processes, just as the yield function condition! = 0 does. It indi
cates that Bij are not completely arbitrary (as Aij are) but in fact are related to Bij, Pij , i'iijkZ,

i'iijkZ, etc. It will turn out that the Aij and Bjj are also related by the condition! = O. Hence
(32) and! = 0 must be mutually consistent, which says that the yield condition and the
free energy are related. The relationship is however quite easy to satisfy as indicated in the
special examples given below. In permitting the second law to restrict domains of processes
as well as constitutive assumptions we utilize the ideas of Leigh [22]. In fact, it seems to us
that the second law really only verifies consistency of the other assumptions concerning
constitutive relations and process dbmains.

Suppose that one insists that (32) implies restrictions only on the constitutive relations.
Then (32) requires different expressions for "loading" and for "unloading". The end result
(actual process) is however precisely the same in either case. The requirement for modifying
¢ is awkward and we prefer the restriction on the process domain as a matter of con
venience. By allowing a restriction of the process domain, one can use single valued con
stitutive relations for plastic materials. If initially we have a process where Fij is positive
(and therefore o¢/oPij is negative) and we attempt to reverse Fij' we cannot do so and also
satisfy (32). Hence (32) implies Fij = 0 under these conditions.

Convenient special process No.4

We consider that the temperature can be changed nonuniformly «hout inducing
plastic deformations or displacement gradients. Hence Ci does not vamsh and we obtain
the usual condition

(33)

for the relationship between the heat flux vector and the temperature gradient under these
conditions.

Convenient process No.5

As noted in process No.3, the inequality coefficients do not depend on rates and hence
the same result must be obtained when! = 0 and! < O. Hence, considering the results
(28H31), (24) becomes

and implies that

o¢
t ijkl - Po-- = O.

OlXjjkl

(34)

(35)

The results so far obtained in this paper can be summarized in a theorem which give
necessary and sufficient conditions for the second law (5) to hold.
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Theorem 1

Consider any body B made of a plastic material such that the dependent variables
(Sij' tkk , S, tUk ' t ijk" </J: q,,) are single valued. functions of the intermediate variables (elj ,
ckk> Pij , lXijk> lXijkt' n In such a way that (a) Pij ¥- 0 on loading (b) o</J/oP;j ¥- 0; (c) equation
(11) is the momentum equation; (d) the deviatoric stress is given by Sij = POO</J/Deii; let these
conditions hold at each point X" in (B) and the dependent variables be sufficiently con
tinuous in their arguments. In order that the postulate (5) hold for all smooth admissible
processes in (B), it is necessary and sufficient that the following statements be true for each
point X" in (B).

(i) The entropy and stresses are related to the free energy through

S+o¢/oT = 0,

tkk - 3pOO¢/oCkk = 0,

tijk PoO¢/olXijk = 0
and

t ijkt P00</J/orxijkl = O.

(ii) The heat flux vector, temperature gradient and residual strain obey the inequality

since in general (24) cannot be reduced to (32) and (33).

Energy equation

Under the conditions of the above theorem the energy equation (20) becomes

TS' o¢ . (36')q",,, + por = Po +PooP. Pi",,,

where, of course, the last term is restricted by (32). For some purposes it is convenient to
have the value ofthe "stored energy" Xwhich is simply the difference between the work done
by all external forces and the heat releases in an adiabatic process. In the present context
this is

x= E- POCD t - vv"ev (37)

where vv"ev is the reversible part of the working of the generalized forces tijnj , tijknj and
tijktnj' The stored energy has been very important to metallurgists and it is this term which
one normally calculates from the continuous contribution of dislocations. The key point
(to us) is that one cannot tell about the consistency of the stored energy unless it is part of a
theory encompassing the plastic deformation process such as that presented here.

5. PERFECT PLASTICITY

According to common usage elastic':"-perfectly plastic materials, do not exhibit work
hardening. Within the framework of the present theory, this means that there is no storage
of energy in a process where the classical stresses produce plastic deformations and are
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subsequently removed. In view of the discussion in assumption No.5, this suggests using a
free energy which does not contain Ctijk or Ctijkl' We shall now consider a very special
(limited application) case of such a material and examine what happens.

Consider a material whose yield function is

f = 2{t(eij -Pi)(eij-Pij)-K2 (38)
and whose free energy is

Po4> = 2{t(eij- p;j)(eij- Pij)/2 +(32 + 2{t)(ekk - Ct[T - TO])2/2

- PoCD(T - TO)2/2To+KijkIYkIPijT/To· (39)

where Ct, 2, {t, CD are the normal coefficient of thermal expansion, Lame's constants and
specific heat, respectively. The last term will be discussed below. For this material, the
deviatoric stresses are

Sij = 2{t(eij- P;j)

for all process and Theorem 1 yields

tkk (32 +2{t)[ekk -Ct.(T- To)]

and

(40)

(41)-Po a4> p.. = [2JL(eij-Pi)-KijkIYkITTo]Pij 2:: 0aPij IJ

hence we have, from Theorem 1 when T,i = 0

(Sij-KijkIYkIT/To)Pij 2:: 0 (42)

and from J = 0, Sdeij - Pij) = 0 when f = O. Clearly KijklYkl can be interpreted as the
locus of stress states where plastic flow commences. It is required to be non-zero by virtue
of constitutive assumption No.5. If we assume: (a) isotropic materials, (b) Ykl = Y,b note
that Pii = 0 and that initially T/To = 1·0 (42) reduces to

(42a)

where K is a constant and Yij is the "shape factor" of the yield condition in stress space.
It is discussed clearly in [1, p. 18] in terms of the usual yield condition. The KYij are not
changed by the deformation in perfect plasticity so that "unloading" and subsequent
"reloading" leads to plastic flow commencing under the same conditions as in the initial
situation.

The entropy is

PoS = +(32+2{t)(ekk-Ct.(T- TO»+POCD(T- To)/To-KYijP;;fTo

and the energy equation (33) becomes

-qa,a+por = PocDt+Po(32+21l)(Skk)-Sij~j' (43)

Hence in an adiabatic shearing motion in which r = qa = Skk = 0, all of the plastic work in a
material defined by (39) appears as heat. The reversible work rate it: = S ..S../2 u in (37)rev lJ J.) r .
Hence

x=o (44)
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so that the absence of (Xijk and (Xijkl is synonymous with the rate of storing energy also bell1g
identically zero in this model.

From (40) and the condition j = 0, one sees that the stress does not exceed the yield
value in one dimension. In two dimensions the stress rate must be orthogonal to the presen t

value.
Consider now the case of unloading from a yield surface process. Then (41) becomes

2f1(eij-Pij)A.tPij ~ 0

from which one concludes that when eij is negative the condition that lei) > IPijl and hence
the stress falls below the yield value in which case assumption No.6 is again operative and
the response is elastic.

6. LINEAR WORK HARDENING

In order to obtain an illustrative example which includes work hardening, we consider
a material whose </J is quadratic in the parameters. Many of the relations to be obtained
here are formally similar to Mindlin's results [7J in linear elasticity with second strain
gradients.

We assume a free energy such that

(45)

For centro-symmetric (isotropic) materials the a, band c tensors reduce to combinations
of Kronecker deltas (see Jaunzemis [20J p. 302 and Mindlin [7J). Since we consider our
material to be elastic in dilatation our results are slightly simpler than the corresponding
case in elasticity. In particular (38) and Theorem 1 imply

Spq = 2f1(epq -?pq)

t pqr = 2a4 (Xpqr+ as«(Xrqp+(Xrpq)

2b2 • b3 •

t pqrs = 3(Xikiibikpqrs +3(Xislii'! jpqr

(46)

(47)

where b· and b·· are combinations of Kronecker delta symbols defined in [7]. Thelpqr IJpqrs
displacement equations of equilibrium are obtained from combinations of (11), (46) and
(47) as well as (6) and (12). From these or from (47) one sees that the physical significance
ofthe parameters a4' as, b2 , b3 , b6 and b 7 is to permit generalized couple stresses to develop
in the elastic range. Since the !3iik and !3iikl defined by (12) are neglected in the con
stitutive equations (13), consistency suggests that we assume that all elastic couple stresses
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vanish and therefore that these parameters should vanish. Henceforth we shall consider that

a4 = as = b2 = b3 = b6 = b7 = O. (48)

Under the conditions (48), the displacement equations of equilibrium become

V2uj = V2Vj-(tll)(2c2 +C3)V4 V j (49)

where

V2g = fPg/iJX/JX j ,

V4 g = iJ4 g/iJX joX/)XmiJXm

and where the condition P;j = iJVJiJX j = 0 has been used. Equation (49) is general and
does not have any connection with the yield function to this point. When! < 0, P;j vanishes
and hence increments in the displacement field caused by changes in the boundary condi
tions are the normal ones of linearly elastic materials. Then the particular solution of (49)
are simply the residual deformations and the stresses required to equilibrate them.

When P;j -:P 0, the yield condition, (46) and (47) couple u j and Vj' Suppose that the
yield function is given by (16d) and it is the!;j in (16d) that vanishes when Fjj -:P 0, then

while

C3
+ 3-(p;/bjk +bjjIt/+Pj/b jk).

In the special case where K k/ = kbk /? (50) becomes

k
Sij = Y;j +3{c2(3P;j+ P;/bj/+ p;/ + Pj;)+C3(p;/bj /+ Pjkbik)}.

In this special case, (49) becomes

K(4c2 +C3)V2Vi+(2c2 +C3)V4 V j = O.

(50)

(51)

A similar expression can be obtained for Uj by using the yield condition and eliminating
Vj. The first term is the counterpart of the elastic (or even perfectly plastic) solution. The
main point is that a second term occurs in (51) which is related to the c parameters in (45).
This additional term describes deformations which are oscillatory in space and these develop
only during plastic deformations as a result of (48). They have many of the features which
one expects to find in the continuum analogue of dislocations.

The condition (iJe/J/iJP;)Fij Z 0 obtained from the second law is

(
2C2 c3 ) .

Sjj- Y;j-3CXjjrr-3CXjjrr Pij Z O. (52)

By using (50a)and derivatives thereof(52) becomes a restriction on the permanent deforma
tions. The result is
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The rate of storing energy is given by (37) and is

i. = Siieij-Si/21i)+tijklftijkl-qi.i+POr-POCDT

or alternatively

(53)

(53a)

Simple shear

The results of including the higher gradients is now illustrated for the material defined
by (45), with the case of simple shear in which all types of body forces and couples are
absent. Simple shear implies that the deformation U 1 varies only in the thickness direction.
That is

(54)

so that (51) becomes

(55)

where

The solution of (55) is

K(X2) = AX2+B+CcoswX2+Dsin wX2

(56)

(57)

(58)

where the constants A, B, C and D are to be determined by the boundary conditions. The
first two terms in (57) correspond to a homogeneous strain and this is aU that occurs in
classical plasticity where co vanishes. The result of including the higher gradients is in the
last two terms of (57). These nonhomogeneous strainfields develop only when the deforma
tions are plastic.

The stresses in simple shear are given by (50) to be

S12 = 21i(e12 -Pd

t1222 = (2C2 +C3)P12/3

when (48) is used. The yield condition (16d) becomes

(S12-kt1222-l';.2)(Sl2+ktl222+ Yd = O. (59)

Suppose that it is the first term in (59) which vanishes, then the stress strain relation (58)
becomes

S - 2 [k(2C2+ C3)-ili] (60)
12 - Ii k(2c2+ C3) el2'

By combining (58) and (59), the total strain el2 can be expressed in terms of the plastic
strain P12 , and then the higher gradients are obtained by differentiation. The result is

1X1222 = [1 +k(2c2 +c3)j6Ii](d2Pl2/dX~). (61)
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The second law (52) becomes

[kt 1222 -(2C2 +C3)IX 1222/3]P12 20

by using (58) and (59). Alternatively (62) can be expressed as

k(2c2 +c3)[P12 - (k 1/w2)(d2P12/dXmp12 ~ 0

where

Using the solution (57) when D = 0, (63) becomes

(A - Cw sin wX2+k1Cw sin wX2)(A - Cw sin wX2) ~ o.

Hence one obtains conditions that

AA ~ 0

A ~ wlCI ~ 0

A ~ w(1-k1)ICI ~ o.
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(62)

(63)

(64)

Similar restrictions are obtained when D does not vanish. Thus the second law imposes
restriction on processes through limitations on boundary and initial conditions. Clearly
these are the result of introducing assumption NO.5. The constitutive equations are also
restricted since k 1 in (64) must be less than unity.

The stored energy in (53a) can be expressed as

in the case of simple shear. Alternatively it is given by

(65)

by virtue of (58). Hence when the strains are homogeneous there is no increase in the
stored energy. The result is consistent with considerable experimental data on stored
energy as determined by metallurgists. The energy that is stored is determined by the same
parameters (C2' C3 and k) that define the work hardening coefficient in (60) and (65).

The energy equation (36) reduces to the heat conduction one with a source term. It is

(66)

The last term is never negative by virtue of (59) and (62). It is possible to show that the
source term in (66) is

when X is given by (65).
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7. COMMENTS

Modern research in plasticity has many goals, some of which may not be conSIstent
with one another. Our purpose here is to develop a continuum theory which permits
behavior on a small scale (microscopic) to influence large scale (macroscopic) response in
a logically consistent manner. Experimental evidence indicates that the deformations are
not homogeneous on the small scale when they are at the macroscopic level. We have
accomplished the purpose of having the response at the two scales interact and at the same
time found the nonhomogeneous deformations on the small scale as a result. We have
done this by using higher displacement gradients, which in turn was motivated by the
atomistic concept of work hardening being due to dislocation interaction. In turn these
imply long range forces which are not of the contact (nearest neighbor) type. To illustrate
the entire picture we had to consider a very special free energy and therefore the results
are probably limited in their application. However considerable insight can be obtained
by this particular model even if the details are not adequate.

Gradient theories are not the only way of introducing the interaction between the two
levels of observing nature. Internal variables have recently [3,21] been used to reproduce
phenomenological results. The internal variable approach permits one to utilize results
known to metallurgists and is certainly more versatile than gradient theories. However
the internal variable method does not contain the local approximation to the deformation
field while the gradient type theories do. A major problem in the gradient theories is the
choice of those gradients which are to be used. Moreover the solution of boundary valued
problems in the nonlinear range can be expected to be very difficult.

The continuous distribution of dislocations [14] can be used to calculate the increase
in stored energy when one assumes (or measures) the distribution of dislocations. The
gradient theory described above requires many more formal assumptions than the con
tinuous distribution of dislocations but at the same time it can be used during the process
of plastic deformation and predicts how energy is stored.

It is well known that slip takes place on a few discrete planes between which there is
large amounts of material that does not yield. Usually the mathematical theory of plasticity
ignores this and assumes homogeneous plastic flow in a tensile test specimen. The present
theory predicts regions of greater (and lesser) residual deformations, but not the discrete
planes such as are actually observed.

8. CONCLUSIONS

A continuum model of plasticity which permits small scale response to interact and
influence large scale behavior has been developed. Higher strain gradients have been used
and these in turn lead to nonhomogeneous strain fields in simple shear.

The main value of this model appears to be the conceptual one because it permits one
to better understand the fundamental role of small scale response on observed behavior.
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A6cTpaKT-B Ka'lecTBe MOAeJIH AJIli nJIaCTH'IecKHX Ae4>opMaI.\HH, npeAnOJIaraeTCli TeopHlI, 3aKJIIO'IalOII.\all
rpaAHeHTbI AecPopM~HH nepBoro H BToporo IIOPllAKa. ,[(aIOTcll, TaK)J(e, 3BPHCTH'IecKHe apryMeHTbI Mll
y'leTa rpaAHeHTOB. rJIaBHbIM AOKa3aTeJIbCTBOM lIBJIl1eTCli pa3BHTHe JIOrH'IecKoA cxeMbI, B KOTOPOH
nOBeAeHHe B MaJIOM MacwTaOO MO)J(er B3aHHoAei!:CTBOBaTb c B03Aei!:cTBHeM B 60JIbWOM MacwTa6e.
rpaAHeHTbI npHBOAliT K AecPopMaI.\HllM, KOTopble cOAep)J(aT KOJIe6aTeJIBHble COCTaBJIlIlOII.\He npH Ao6aB
Ke K TaKHM )J(e caMbIM, IIOJIY'leHHbIM 003 HHX. ,lJ;n1l '1aCTHOrO MaTepHaJIa, 3TH AecPopM~HH B03HHKUHle
BCJIeACBHe OCYI.Vla~HH, B03HHKalOT TOJIbKO BO BpeMli IIJIaCTH'IecKHX AecPopM~Hil:. OHH 06JIaAalOT B
60JIbWHHCTBe CBOi!:CTBaMH, KOTOpbIX MO)J(HO O)J(HAaTb npH CIIJIOWHOi!: aHaJIOrHH AHCJIOKallHH. B
npOTHBonOIIOHO)J(HOCTH C TeopHeH CIIJIOWHOrO pacnpeAeJIeHHlI AHCJIOKallHH, npeAJIaraeMali TeOpHl!
npHMeHlIeTCl! K BCeMy npo~eccy IIJIaCTH'IecKHX ,[(ecPopMa~HH.


